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Heat transfer in a layered porous medium heated from below 

By R. McKIBBIN AND M. J. O’SULLIVAN 
Department of Theoretical and Applied Mechanics, University of Auckland, New Zealand 

(Received 21 July 1980 and in revised form 13 February 1981) 

Previous work by the present authors on the onset of convection in a layered porous 
medium heated from below is extended to an investigation of the heat transported by 
convection at slightly supercritical Rayleigh numbers. 

The two-dimensional convection patterns and associated values of the critical 
Rayleigh number, cell width and slope of the Nusselt-number graph are calculated 
for two- and three-layer configurations over a wide range of layer depth and per- 
meability ratios. The results show that the commonly studied problem of a homo- 
geneous layer bounded above and below by impermeable boundaries is a special case, 
in that the slope of the Nusselt-number graph at  the critical point is nearly independent 
of cell width. For a homogeneous layer with a permeable upper boundary, and for 
multi-layered systems, the slope of this graph depends strongly on cell width. 

1. Introduction 
The amount of heat that is transported by convection through a fluid-saturated 

porous medium is of considerable interest because of its association with the modelling 
of geothermal fields. The earliest work, including that of Lapwood (1948), established 
that convection can occur in a horizontal layer between isothermal boundaries for 
Rayleigh numbers above a certain value. Subsequent research has been directed a t  
more complicated onset problems, and finite-amplitude motion a t  supercritical 
Rayleigh numbers for homogeneous layers and, in a small number of cases, for more 
complicated configurations. A summary of this work is provided in an excellent review 
by Cheng (1978). 

Associated with the numerous works on finite-amplitude convection in a homo- 
geneous layer (see, for example, Elder 1967; Straus 1974; Caltagirone 1975; Joseph 
1976; Home & O’Sullivan 1978a, b ;  Schubert & Straus 1979) have been estimates of 
the heat flux produced by such convection. An analytical approximation for the 
Nusselt number, which measures the heat flow, was found by Palm, Weber & 
Kvernvold (1972) for a homogeneous layer using a perturbation technique. The 
resulting sixth-order expression was found to agree reasonably well, a t  Rayleigh 
numbers several times the critical value, with the many numerical results derived by 
the above authors and with experimental results. 

Recently, three studies of convection in a more general inhomogeneous layer have 
been made. Masuoka et al. (1978) examined the criterion for onset of convection in a 
porous medium composed of two layers of different permeabilities or thermal con- 
ductivities. They found that increasing non-homogeneities in permeability or con- 
ductivity led to transitions of flow patterns from ‘ large-scale ’ convection occurring 
throughout both layers to ‘local’ convection confined mainly to one of the two 
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layers. Rana, Horne & Cheng (1979) numerically investigated finite-amplitude 
convection in a three-layer model of the Pahoa reservoir in Hawaii. The criterion for 
onset of convection in a porous medium comprising an arbitrary number of separately 
homogeneous layers of different depths, permeabilities and conductivities waa 
established by McKibbin & O’Sullivan (1980). They also noted the transition of flow 
patterns similar to those found by Masuoka et al. (1978). 

The present paper extends the previous work of the present authors on the onset 
problem to an examination of post-onset behaviour and provides estimates of the 
heat transported by convection in a general layered system for slightly supercritical 
Rayleigh numbers. Since, in a geothermal context, inhomogeneity, particularly 
layering, is commoii, the problem has much practical importance. In  particular it is 
of interest to use observations of surface or near-surface heat flux to deduce the depth 
of the geothermal heat source and the permeability structure of the system. 

The analysis presented can be applied to any number of layers and provides the 
criterion for onset, the cell-width and convection pattern, and the slope of the graph 
of the Nusselt number for slightly supercritical Rayleigh numbers. Because of the 
wide variety of possible configurations and values of various parameters, detailed 
results are presented only for the two- and three-layer cases. These represent idealized 
model geothermal fields where a permeable zone either overlies or is overlain by a less 
permeable layer, or where a horizontal aquifer occurs in the interior of a matrix with 
a different permeability. 

For the configurations considered the variation of heat transfer with cell width is 
investigated. One of the most interesting results obtained is that the onset mode 
(either a single wide two-dimensional roll or many narrow two-dimensional rolls a t  
the critical Rayleigh number) does not necessarily maximize the heat transferred a t  
Rayleigh numbers above critical. Also it is found that, for all cases studied, except the 
uniform layer with a closed top, the heat transfer is strongly dependent on cell-width 
and is maximum, for supercritical Rayleigh numbers, at  a cell-width different from 
that for onset. 

2. Problem formulation 
A saturated permeable layer of total thickness d, comprising N separate homo- 

geneous layers, is considered. The thickness, permeability and thermal conductivity 
may vary from layer to layer. The system is bounded below (beneath layer 1) by an 
impermeable isothermal surface, at a temperature T,+AT. Here, T, is the (atmos- 
pheric) temperature of the top surface, which is considered to be either impermeable 
(case A )  or at constant (atmospheric) pressure p a  (case B ) .  (See figure 1. )  

Within a typical stratum, layer i, of thickness d,, the usual equations of conserva- 
tion of mass and energy, and Darcy’s law are assumed to hold: 

m , - + V . v  aP = 0, 
at 

a 
- [m,pcT + (1  -m,)p,c,T] + V .  (cTv) = kiV2T, at 

V 
vp = p g - - v .  

Ki 
(3) 
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' t  T =  T,; w = O(A) or p = p o  ( B )  
d 

I 

- 
0 T = T , + A T ; w = O  I X 

FIGURE 1. Schematic diagram of configuration considered - a porous medium comprising 
N homogeneous horizontal layers. 

Here mi, K,, pi,  c, are respectively the porosity, permeability, density and specific 
heat of the porous matrix in layer i, ki is the thermal conductivity of the saturated 
medium, p, c, v, v are respectively the density, specific heat, kinematic viscosity and 
mass flux vector of the fluid and T and p are the temperature and pressure a t  a point 
within the saturated porous medium. The acceleration due to gravity is represented 
by the vector g. 

The density of the saturating fluid is assumed to vary linearly with temperature, 

where a is a constant and pa is the density of the fluid at  temperature Ta. 
For small (but finite) amplitude convection in the system, only steady solutions are 

of interest. The stability of steady two-dimensional convection in a homogeneous 
layer has been investigated by Straus (1974) .  He established that, provided the 
Rayleigh number R is small enough, there is a range of horizontal wavenumbers over 
which the basic roll convection pattern is stable. In  a paper by Straus & Schubert 
(1978) further investigation of the stability of such a flow when confined within a 
rectangular box revealed that, for small enough values of R, it was unlikely that there 
were box dimensions for which a stable steady two-dimensional flow could not occur. 
In a later paper by the same authors (1979),  they noted that their results showed that 
it was always possible to force either steady two-dimensional or steady three- 
dimensional convection by proper choice of initial conditions. It thus seems reason- 
able, in the layered systems being investigated in this paper, to assume that two- 
dimensional flows can exist for slightly supercritical conditions, whether the system 
is confined in a rectangular box or not; therefore in the following analysis only the 
two-dimensional region 0 < x < I ,  0 < z < d is considered. On the lateral boundaries, 
corresponding to the limits of each convection cell or possibly to some physical 
boundary, conditions of no horizontal fluid flow or heat flow are imposed. Taking 
v = (u, 0, w) and assuming all variables depend only on x and z, (1)-(3) ,  for layer i ,  
become : 

au aw -+- = 0, 
ax az (4) 
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= k , ( s + = ) ,  a2T a2T 

aP V 

az Ki 
- = -p,[l-a(T-Ta)]g--w, 

for 0 < x < 1, zi-l < z < zi, where zi = Xj=ldj. (For steady flows, the use of mass 
flows as variables avoids the need to use the Boussinesq approximation.) 

The thermal and fluid boundary conditions at  the bottom and top of the system 
are, respectively: 

T=T,+AT and w = O  on z = O ,  

T = Ta and on z = d .  

Continuity in temperature, pressure, vertical mass flux and vertical heat flux requires 
T ,  p ,  w and cTw - k aT/& to be continuous at  each interface. Using the continuity of 
T and w, the last condition is simplified to the continuity of kaT/az a t  each interface. 

The flow of heat through the system may be measured by considering Nu*, the 
mean vertical heat flux over one cell, defined by 

Nu* = f J: (cTw - k g) dx,  
z=h 

where the measurement is made a t  height h, 0 < h < d.  It is easily shown, by inte- 
grating ( 5 )  with respect to x, that Nu* does not vary with z. Therefore the value a t  
the base of the system (where w = 0) can be used, 

The basic procedure, to determine the solution to (4)-(7) and hence evaluate Nu*, 
is to investigate small (but finite) perturbations to the conduction solution (u = w = 0). 
The conduction solution for the temperature T, is a piecewise linear function given by 

for zi-l < z c zc, where Si = di/ki and S = C,”lSj. This distribution corresponds to a 
temperature drop ATi across layer i given by 

Following the standard perturbation procedure, we substitute u = u’, w = w’, 
T = Tc+ T’, p = p,+p‘ [pc is obtained from T, by using (7) and the requirement that 
pc be continuous at each interface]. It is convenient to non-dimensionalize the 
variables differently in each layer; for layer i the variables are defined by 

= T’/AT,, pi = p’K,c/vr,ki, 

(ui, wi) = (u’,w’)cd/r,ki, X = x/d, 
zi = (z-zi-l)/di. 
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Here r, = d,/d is the fraction of the total layer thickness occupied by layer i. Substitu- 
tion into (4)-(7) of these non-dimensional perturbations to the conduction solution 
gives, .for layer i, 

for 0 < X < L, 0 < Z, < 1 and i = 1, 2,. . ., N ,  where L = l / d  is the non-dimension- 
alized cell width. The Rayleigh number R, for layer i, given by 

is based on the layer depth d, and the layer temperature drop AT,. 
For later reference, we also define a parameter R, given by 

This parameter R is a Rayleigh number, given in terms of the thickness and tem- 
perature drop of the whole system and the conductivity and permeability of layer 1, 
divided by 4n2, which is the minimum critical value for a homogeneous layer with an 
impermeable top. The relationship between R, and R is clear from the above. The 
Rayleigh number for each layer R, can also be related to R, and then to R using the 
relationship 

The heat transferred by the conduction solution is 

= AT/&. 

We now introduce the standard Nusselt number Nu, defined as the ratio of the 
heat transferred by convection and conduction to that transferred by conduction 
alone, and given by NU = Nu*/NuZ 

when expressed in terms of the non-dimensionalized variables. 
To aid the solution of (9)-( 12) a stream function $$ for layer i is introduced so that 
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to satisfy the equation of conservation of mass (9). Substitution into (10)-(12), and 
elimination of p ,  gives a pair of equations for q and $,: 

for 0 c X < L, 0 < Z ,  < 1 and i = 1,2 , .  . . , N .  The boundary conditions can be ex- 
pressed in terms of the non-dimensional quantities q, $, as follows: On Z ,  = 0, 

Tl = 0 and $1 = 0. 

On 2, = 1 or Zi+l = 0, 

f o r i =  1,2,  ..., N - l . O n Z N =  1, 

( 1 6 c )  
W N  

82, 
T N  = 0 and $N = 0 (caseA) or - = 0 (caseB). 

On the lateral boundaries X = 0 and X = L, 

3. The perturbation procedure 
For a given physical configuration there is a minimum temperature difference AT, 

across the system which can produce the onset of two-dimensional convection with a 
cell-width L. The value AT, corresponds to the minimum critical Rayleigh number 
for the system, R = R, (see McKibbin & O’Sullivan 1980). For values of AT above 
A E  ( R  > Re) a finite-amplitude flow can exist. Following Palm et al. (1972), we 
define a parameter E ,  where 

€2 = (AT - AT,)/AT 
= (R-  R,)/R = (R, - R,,.)/Ri, 

where Rie is the critical value of the layer Rayleigh number R,, i = 1,2, ...,nf. The 
value of E remains less than unity for all values of AT > ATc. The solutions q, Ijr, of 
( 14), (15) are expanded in power series in B :  

q = € ~ p  + € 2 ~ : ~ )  + . . . , 
$, = €$:I) + €“p + . . . . 

(18) 

(19) 
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The Rayleigh number R may also be expanded in a finite power series. From (17) 

= R , + R f ) ( e ’ + ~ ~ + . . . + e ~ )  (20) 

where Rf) = Re/( 1 -€a). Writing R f )  in this fashion ensures that, expanded to a 
finite order of E, the correct value of R is used. For each layer, we may also expand 
R, as 

(21) 
where RE) = R,J( 1 - E ~ ) .  

The above series for q, @,, R, are substituted in (14), (16) and the boundary con- 
ditions, and give rise to a sequence of problems each associated with a power of e. 

R, = R,,+R(,S,)(E~+E~+ ...+ €9, 

4. The first-order (onset) problem 
By substituting (18), (19) and (21) into (14) and (15), we obtain, for the first-order 

(O(e ) )  problem, 

togetherwiththeboundaryconditions (16)withG, @,replaced byTil), # ,  i = 1,2, ..., 
N. This is the ‘onset’ problem for convection in a layered medium, previously for- 
mulated by McKibbin & O’Sullivan (1980) and briefly outlined here. 

consistent with the lateral boundary 
conditions may be written 

The Fourier series expansions of T f ) ,  

where doubly subscripted variables are functions of 2, only. Substitution into (22), 
(23) and matching the coefficients of the orthogonal eigenfunctions gives 

[D! - (na,)21 @\2 = n 3 R , ~ T ~ : ,  (24) 

(25) 

where D, = d/dZ, and a, = nr,/L, for i = 1,2, . . ., N and n = 0, 1,2, . . . . The boundary 
conditions are found by a similar matching process. It turns out that the terms Ti:) 
are zero. We choose the cell width L of the onset disturbance to be that corresponding 
to a single cell, that is horizontal wavenumber 1. (The Rayleigh numbers for onset of 
larger wavenumber components are then higher than for n = 1.) Therefore we take 
Ti2 = @i: = 0 for n 2 2, and 

r, 

[Dj - (n~x, )~]  Ti: = na t r t @l) m, 
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Elimination of either T& or $it) from (24) and (25) (with n = 1) gives 

[(D: - a$)2 - RIc] (Ti;), $$) = 0.  

Using (24) and (25) the solutions for Ti\), +\:) can be written in the form 

TA) = A~1)sinhpIZI+B~1)cosh~,Z,+E~1)sinhyIZI+F~1)coshy,Z,l (26) 

$!:) = (A~1)sinh~IZ,+B~1)cosh~,Z,-E!,1)sinhy,Z,-P~1)coshy,Z,), (27) 

where = ai(l + r i ) b  and y, = aI(l - ri)) with vI = (RIc)4/ai. Note that yi may be 
imaginary or zero with corresponding trigonometric or linear forms in (26) and (27). 

Substitution of (26) and (27) into the boundary conditions gives 4 N  homogeneous 
linear equations in the 4N unknown coefficients Ail), Bi1), E\l) and Pi1), i = 1, 2, . . . N. 
These equations (see McKibbin & O’Sullivan) can be written in the matrix form 

r, 

MA(,) = 0, (28) 

where A(,) = (Ail),Bil)l Eil), Fr), Ah1), Bkl), Ef), FP), . . . A$), B$), E$), F$))T is the vector 
of first-order coefficients, and M is a 4 N  x 4 N  matrix found from the boundary con- 
dition equations. The condition for a non-trivial solution for A(,) is det M = 0, which 
is solved for the variable R,. The resulting solution for A(,) may be normalized (in this 
case we set El’) = 1.0) and the amplitude of the motion represented by a multiplica- 
tive constant a,. We then write 

where a circumflex denotes a normalized quantity. The value of a, is not determined 
as part of the onset solution but will be found from a ‘solvability’ condition arising 
in the third-order problem. 

5. The higher-order problems 
The solutions for higher-order problems are written in the form 

where amplitudes ak may be determined from the order k + 2 problem. 
The O(e2) equations are 

a 2 $ p  1 a z $ p  ~ ,aTiz )  -+ --=--- 
ax2 r: 82; r: ax’ 

a2T(,2) 1 a2T!2) a$\z) a$$,) aTi1) a$i1) aT\1) 
-+-l=- +----- (33) 
8x2 T-: azq ax az, ax ax az,’ 

for i = 1, 2, ...’ N with associated boundary conditions. The expressions (30) and (31) 
for Ti2), $i2) are substituted into (32) and (33). Equating coefficients of the Fourier- 
series terms in the equations and in the boundary conditions gives non-trivial solu- 



Heat transfer in a porous medium heated from below 149 

tions only for n = 0 and n = 2 .  These two problems are solved by a process similar 
to that for the first-order case, using matrix methods. The resulting expressions for 
Ti:) and Ti;), $$;) are algebraically complicated, and will not be given here; their 
important property is that they are proportional to a:. 

The expansions for the second-order terms can then be written 

~ $ 2 )  = a2 cos - + a: + cos z) , 
nx L ( L 

The third-order problem is found by retaining O ( 8 )  terms, and is given by 

a2$i3) 1 a"(?) R,, aT$3) Rg) aT\1) 
-+-A =------ 
ax2 r: azq r: ax rf ax' 

(34) 

(35) 

a2T\?) 1 a2T!a) a$$3) a$$1) aTi2) a$(?) aT(!) a$(?) aTi2) a$\? aT',1) 
+-A=- +22->---- (37) 

After substitution of expressions (30), (31) for Ti3), $i3)) (34), (36) for Tt2), $i2) and (29) 
for Ti'), $il) into (36) and (37), equating Fourier series coefficients gives non-trivial 
solutions only for n = 0, 1, 2, and 3. The solvability condition for the problem when 
n = 1 gives a relationship between a, and R f )  as follows. 

a ~ 2  r: azq ax +%= az, ax ax az, ax az, * 

The equations for the functions TlT) +$ are found to be 

a 
ri 

(0: - a:) $:;) = 3 R,, Tg)  + R(p) zc a 1 $<l) a 1  9 

(0% - a:) Ti;) = a, r, $1:) - a, ria; [$$ D, $2;) + 9:;) Di $$ 
+ Di $$2 + &$\:) Di + $# D, $::)I. 

Elimination of Ti:), $$ separately gives two fourth-order differential equations, with 
algebraically complicated non-homogeneous parts. The differential equations and 
boundary conditions are not self-adjoint and therefore it is difficult to find a solvability 
condition directly from them. Instead we solve them directly and determine the 
condition algebraically. Substitution of the (previously found) expressions for the 
lower-order solutions allows the third-order solutions to be expressed in the form 

Ti:) = A~3)sinh~iZ,+B'i3)cosh~,Z,+E\3)sinh yiZ,+ Fi3)cosh y,Z, 

$$:) = (A~3)sinh~,Z,+B$3)cosh/3iZ,-E(i3)sinh y,Z,-F\3)coshyiZ,) 
r, 

for i = 1, 2, .. ., N, where C,, H,, pi ,  Q, are known functions of Z,, calculated in terms 
of the parameters of the first- and second-order solutions. 

Use of the boundary conditions leads to a set of 4 N  non-homogeneous linear 
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equations in the 4 N  unknown coefficients A\3), Bi3), Eli3) and Fi3), i = 1,2, ..., N .  
These equations can be written in matrix form 

where A(3) = (A',3), Bi3), El3), Fi3), Ah3), BL3), EL3), FL3), . .., A$), B$), Ef?, Ff!)T,  M is the 
4 N  x 4 N  matrix found in the first-order problem (see equation ( 2 8 ) )  and G and H 
are known vectors. (Use is made of the relationship R$)/Ri, = R',")/R, for i = 1, 2, . .., 
N.) However, it is known that det M = 0. The condition that (38) represents a com- 
patible set of equations and hence is solvable to within a multiplicative constant a3 
leads to a relationship between R',S)/R, and a:. This may be written 

= f3RP)/Rc, (39) 

where 8 depends on the number of layers, layer depths, layer permeability and 
conductivity ratios, cell-width and the upper surface boundary condition for the 
system under consideration. 

6. The Nusselt number 
The complexity of the algebra involved in calculating higher-order solutions pre- 

vents this approach being used to find those components. However, at  this stage we 
are able to calculate a second-order approximation for the Nusselt number Nu. 

Since we are truncating the perturbation expansion a t  this order we put s = 1 in 
(20) and, rearranging, obtain 

R(l) R $2 = -- 1. 
Rc Rc 

The Nusselt number, Nu, from (13) is, to O(e2): 

after substitution of the expressions for Ti') and Ti'). 
From (39), a; = 6Rk1j/Rc and then (40) gives 

where 

is now known. The expression (41) for Nu gives the relationship between the Rayleigh 
number R and the heat flow through a layered system, for R > R,. Expression of NU 
in this form enables a direct comparison to be made with the value for a homogeneous 
layer with an impermeable top. For the latter case, Nu, = 1, and Nu = 1 + 2(R/Rc- 1) 
for R > R,, which is the result given by Palm et al. (1972) in their equation (3.19), after 
using (3.4) with s = 1 .  
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FIGURE 2. Nusselt number Nu for a homogeneous layer with a closed top. 

7. Numerical results 
There are clearly a wide variety of possible configurations and values of the various 

parameters used; thus only a small proportion of possible results can be presented 
here. Also there have been very few finite-amplitude numerical results and no experi- 
mental values reported for multi-layer systems, to enable comparison with results 
found in the present study. The presentation of a small selection of values will pro- 
bably provide a better source for quantitative and, perhaps more importantly, 
qualitative comparisons than a large number of detailed results. Consequently, 
analysis is confined to the two- and three-layer cases, and in particular to a permeable 
aquifer either overlain (‘capped’) by, or overlying, a less permeable layer, or lying 
centrally between two layers of another permeable material. These are then com- 
pared with results for a homogeneous layer with either a closed (case A )  or an open 
(case B )  upper surface. 

Since the emphasis is chosen to be on the different permeabilities of the layers, the 
conductivities (and hence thermal diffusivities) of all the layers are assumed to be 
equal in what follows, i.e. kt = k,, i = 2, . , . , N .  (Results for layers of different con- 
ductivities may easily be found in the same way as those given below.) 

The behaviour of any particular layered system will thus depend on the layer 
depths ri, the permeability ratios K,/K, ,  the upper boundary conditions, and, in the 
case where there are lateral boundaries, on the distance between them. Both the 
laterally unbounded and bounded cases can be treated simultaneously by considering 
the behaviour of one cell only, of width L. The criterion used to determine the cell- 
width at  onset in either system is that the value of R, should be a minimum with 
respect to L. 

For each layered configuration, calculation of the critical value of R, which is a 
scaled Rayleigh number based on the parameters K, ,  k, of the bottom layer, enables 
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a comparison to be made of the temperature difference required for onset of convection 
in the system with that required for a laterally unbounded homogeneous layer com- 
posed completely of the material of the bottom layer for the stratified case. The 
associated value of L then gives the cell-width of the two-dimensional rolls of the 
convection pattern a t  onset in the layered system. The subsequently calculated 
number CT gives the slope of the graph of the Nusselt number N u  versus R/R, for 
values of R above R,. 

The graph of N u  for each layered system will be similar in form to that for the 
homogeneous layer with a closed top (where the minimum critical value of R is 
R, = 1.0 with L = 1.0 and v = 2.0), shown in figure 2. The best higher-order approxi- 
mation found by Palm et al. for a single cell of width 1.0 is also shown on this graph, 
together with the trend indicated by experimental and finite-amplitude results for an 
unbounded layer. The limitations of the first approximation in this case are clear. 
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However, for values of R near B,, prediction of Nu with this first approximation is 
close enough to show that the results for the layered cases will be a useful indication 
of the heat flux for values of R not too far above R,. 

In general, the results for any particular system follow a pattern which can be best 
described by taking an example. We choose as this example the two-layer configura- 
tion with r1 = 0.5, K2/Rl  = 0.01 and with a closed top (case A), results for which are 
given in figure 3. 

Variation in the width L of the cell produces variation of the critical Rayleigh 
number R, at which onset of convection can occur (see figure 3 a ) .  For a narrow cell, 
R, is large; as the width of the confined cell increases, R, first decreases to a minimum 
value Rcmin (this corresponds to the previously defined criterion for onset in an un- 
bounded system) and then begins to increase aga9. The results for one cell may be 
used to determine those for larger numbers of cells, by appropriate scalings of the 
single-cell curve, and superposing them - the resulting curves are shown as broken 
lines in figure 3 (a).  At some larger value of L, which we denote L1,2, the value of R, 
corresponding to the formation of two cells side by side, each of width *Ll, becomes 
equal to that for the formation of one cell. As the total width of the system is increased 
above L1,2 two cells become the preferred onset pattern, and at still larger widths 
(denoted L2, s, etc.) it  can be seen that larger numbers of cells will form, the number 
of cells being determined by choosing the curve which minimizes R, with respect to 
the total system width. 

The corresponding variation in the value of a, shown in figure 3 (b), is interesting. 
After rising to a maximum value, a decreases with increasing L and becomes exactly 
zero at  L1,2 where the one cell/two cell change takes place. For a single cell and 
values of L above L1,2, a continues to decrease, first becoming negative, and then 
discontinuously positive, with moderate values as L becomes large. These latter 
values of u for L > L1,2 may have no physical significance, however, since at L = Ll,2 
the preferred onset pattern changes to two cells and a changes (discontinuously) 
from zero to that value corresponding to L = *L1,2. At a Rayleigh number above the 
critical values for both one cell and two cells it may be possible to induce either mode 
with the right choice of initial disturbance. However for cell-widths for which u is 
negative it seems likely that a single wide cell is physically unrealizable. Further 
finite-amplitude investigations are required for complete understanding of this point. 
By superposing the scaled multi-cell curves in the same way as for R, in figure 3 (a),  it 
is seen that similar discontinuities in the graph of a occur at each width Ln, n+l where 
a change from n cells to n+ 1 cells takes place, although, for n > 1, the value of a 
does not decrease to zero at the changeover width (see figure 3b) .  

At supercritical Rayleigh numbers the cell-width of the convection cells is often 
determined by the maximum heat flux principle (first postulated by Malkus 1954). 
However there are two points which need to be considered in applying this principle. 
Firstly the Nusselt number, given by Nu(L)  = 1 + a(L)  (R/R,(L) - 1 )  does not neces- 
sarily attain its maximum a t  the same value of L which minimizes R,. Certainly it 
can be seen from figure 3 ( b )  that a is not a maximum at the cell-width for which R, 
takes its absolute minimum Rcmin. Thus as R increases beyond its value Rcmin a t  
onset the cell-width for maximum heat transfer may change. Secondly it has been 
shown by Straus t Schubert (1979) that the maximum heat transfer principle is not 
strictly correct. For a uniform layer at  low supercritical Rayleigh numbers three- 
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dimensional flow transports less heat than a two-dimensional roll but random initial 
conditions may lead to either state. These authors suggest that the lack of clear 
preference may reflect the fact that the Nusselt numbers for both modes of convection 
are close. 

These points are further discussed in $9  particularly with respect to the occurrence 
of more than one two-dimensional convection mode. 
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8. The two-layer system 
(a) Closed top (case A) 

A summary of some results for two-layer systems with a closed top (impermeable 
upper boundary) for K, /K ,  = 0.01 and 0.1 and for rl = 0-2(0*2)1.0 are shown in 
figure 4. The values for R, are determined, as described above, by the criterion that 
the critical Rayleigh number for the system be minimized with respect to the system 
width L; consequent discontinuities in the value of u occur at the changeover values, 
where the preferred number of cells at  onset increases by one. The pattern for each 
set of parameters can be seen to be similar to the ptwticular case discussed in 3 7. 

There is, however, one exception to this general rule, and a major one at that. The 
case of a homogeneous system (that is where no layering is present, given in figure 4 
by the values for rl = 1.0) has, to the order of the analysis presented here, no variation 

6-2 
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of u with cell-width L, the value remaining a constant u = 2.0. Thus u does not 
change at Ll,2 nor at any value where the number of cells increases. This pro- 
perty of a homogeneous layer has not been noted previously (Palm et al. considered 
only a cell with width L = 1.0). The importance of this exception to the general rule 
for other layered systems (and also for the homogeneous layer with an open, or 
constant pressure top (see below)) may be seen in the fact that it  is the classic problem 
which has attracted most research to date. It has often been studied as the simplest 
model for a geothermal system. The above results indicate that the characteristics of 
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an open top. 

heat transfer for this simple model may be different from those for layered systems in 
general. The simplicity of that model may therefore mask certain heat-transport 
properties of water-saturated geothermal systems, which are not homogeneous in 
configuration. 

For the general case, then, v becomes zero a t  L = Ll,2. For a lateral boundary 
separation slightly less than Ll, 2, (T is very small, and the formula for the heat transfer 
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(41) shows that there is very little increase in Nu as R initially increases above R,. The 
near-maximum-width cell is thus in a somewhat strained state and convects very 
little heat, even though forced by increased temperature differences. For a system- 
width slightly greater than L1,2, u is much larger, and the double-cell pattern will 
convect heat much more readily as R increases above R,. 

As the distance between the lateral boundaries becomes large, the average cell- 
width approaches that corresponding to the unbounded system result, while the 
‘ changeover ’ value of R, for each extra cell becomes closer to the absolute minimum 
value, Rcmin, for the single cell. The values of Rcmin and corresponding L and u for an 
unbounded two-layer system with a closed top are given in figure 5 for 

10-3 g K, /K ,  Q 103, T1 = o.i(o.i)o.g. 

As explained in McKibbin & O’Sullivan (1980), examination of the dependence of R, 
on cell-width L shows that for some configurations there are two local minima. The 
bifurcations in the graphs in figure 5 result from the changeover as either one or the 
other of these local minima becomes the absolute minimum. The corresponding cell- 
widths and the values of u associated with the two minima are different - an ex- 
ample of a configuration for which this occurs will be discussed further in 59. 

(b )  Open t q  (case B)  
Results for a two-layer system with a constant-pressure upper boundary condition 
are similar to the examples given above. The homogeneous layer with an open top 
also follows the general pattern; unlike the closed-top case, where the value of u does 
not vary with L but remains constant at u = 2.0, the open-top values do vary with L 
(these are given by the curves for rl = 1.0 in the results to follow). 

In  figure 6, the variation of R, and IT with system width are given for the cases 
K2/Kl  = 0.1 and 10.0, and rl = 0-2(0.2)1.0. The values of R, are found to be lower 
than the corresponding closed-top cases; this means that the critical temperature 
difference required to destabilize such a system is less than that for the closed-top case. 

The variation of Rcmin, L and u with the permeability ratio K,/Kl  for a laterally 
unbounded system is given in figure 7 in the same way as for the closed-top case. In  
particular, for a ‘capped’ aquifer (K, /Kl  < 1) the cell-widths may be very large (for 
small r l ,  cells may have widths twice or more times the depth). It appears that the 
wide cell is necessary for circulation of fluid entering the system from above, a greater 
area of the less permeable material being required to provide enough fluid to pass 
through the more permeable material beneath while being heated at  the base, before 
being driven upwards again and out of the surface. In  physical terms this means that 
the recharge and discharge areas of such a geothermal system may be a distance apart 
several times that of the depth of the heater. When the upper layer is too impermeable, 
however, it transfers heat mainly by conduction, while the fluid convects in smaller 
closed cells in the more permeable lower layer. For the wide-cell recharge/discharge 
system, the values of u are correspondingly large (1.5 or more times that for the 
homogeneous layer) while being fairly small for the narrow-cell case where the upper 
layer acts mainly as a conducting medium. 
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9. Variation of Nusselt number with cell width 
As noted by Combarnous & Bories (1975) and others, numerical studies of steady 

finite-amplitude convection show that the heat transfer through a homogeneous layer, 
bounded horizontally by impervious isothermal surfaces, varies at  supercritical 
Rayleigh numbers with the width of the convecting cells. As discussed earlier in $7 
one criterion used for deciding what form the convection pattern a t  such Rayleigh 
numbers takes is that the heat flow be maximized, and the cell-width is chosen 
accordingly; it is found that the widths thus chosen decrease with increasing Ray- 
leigh number. Some justification for this criterion is provided by experimental 
evidence which shows that, as the Rayleigh number increases, narrower cells form. 
At slightly supercritical Rayleigh numbers, however, the cell-widths remain close to 
1.0, the preferred cell-width at  onset of convection. 

The present theory can account for the last result, and provides an insight into the 
behaviour of other systems. The procedure is as follows: for values of R not too far 
above the minimum critical value Rcmin for a given configuration, N u  may be calcu- 
lated, using (4l), as a function of the width of the system, using the values of R, and 
u determined by the overlaid graphs such as in figures 3,4 and 6. The cell-width which 
maximizes N u  can then be determined. 

As mentioned in the previous section, it is found that the homogeneous closed-top 
case is unique, in that u does not vary with cell-width; some values of N u  for 
R > R,,,, = 1.0 are shown in figure 8. It can be seen that N u  remains maximized 
by the same cell-width as that corresponding to the onset value of R,, namely 1.0. A 
similar result would also hold for any case where the variation of u with cell-width is 
either constant, or where u is at  a maximum for the lowest value of R,. If this is not so, 
i.e. a is either increasing or decreasing where R, is a minimum, then the value of L at 
which N u  is a maximum increases or decreases respectively as R increases. It should 
be noted here that, firstly, we have found no case other than the closed-top homo- 
geneous layer where g, to the present order of analysis, is a constant function of cell- 
width; second, the maximum for cr does not, in general, correspond exactly to the 
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homogeneous layer with an open top. 

minimum value of R, (although in many cases the corresponding two values of L are 

For the homogeneous layer, one of the authors (O’Sullivan 1980, in an unpublished 
paper) has shown that Nu does depend on L at O(&), a result which is confirmed by 
the numerical results of Combarnous & Bories (1975). 

One other result which is unique to this case is that at  the system widths Ln,n+l 
where the changeover from n cells to n+ 1 cells takes place, the values of Nu for a 
particular R are continuous. This property does not hold for any other configuration. 

The homogeneous layer with a constant-pressure top is a suitable case for amplifica- 
tion and clarification of these and previous comments. The minimum value of R, is 
0.686 (corresponding to an unsealed Rayleigh number of 27.1) at a cell-width L = 1.35, 
with a = 1.95 (see figure 6, curves for rl = 1.0). However, calculation of a with 
increasing cell-width gives values which first increase to a maximum of 2.55 a t  
L = 0.63, and then decrease to zero at L = 1.91. (This latter value is L1,2, the system 
width a t  which the critical value R, for two cells is equal to that for one cell (R, 
= 0.758).) Thus a t  L = L1,2 = 1.91, the preferred onset mode becomes two cells, and 
the value of a increases discontinuously from zero to the value corresponding to a 
single cell of width L = = 0.955, namely a = 2.40. 

In  the same way as for the closed-top case above, values of Nu may be calculated 
for R slightly above the minimum critical value Rcmin = 0.686. Because of the de- 
creasing behaviour of a a t  L = 1.351, the maximum value of Nu does not occur at  
this value for R > Rcmin. The graphed values in figure 9 show how Nu is maximized 
by a cell-width which decreases as R increases. Also there are discontinuities in the 
values of Nu at each L,,n+l. 

Results for all the multi-layered systems investigated are similar to those for the 
open-top homogeneous layer; the discontinuities in a a t  Ln,n+l cause similar dis- 
continuities in the values of Nu at those system widths. The cell-width which maxi- 
mizes Nu varies with increasing R to a greater or lesser extent depending on the rate 
of variation of u with L near the minimum value of R,. (In a few cases, the cell-width 
which maximizes Nu actually increases as R increases.) The effect seems generally 
greater in systems with an open top. However, to show that multi-layered closed-top 

close). 
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systems also exhibit similar properties, we complete our initial demonstration 
example (two layers, rl = 0-5, K,/Kl  = 0.01, closed top). The graphs of R, and cr as 
functions of L were given in figure 3. Figure 10 now shows values of Nu as in the 
previous two homogeneous-layer cases. 

The foregoing examples serve to demonstrate that, to the present order of analysis, 
the homogeneous closed-top case remains unique. All other configurations show, if 
Malkus’ criterion is used, that the preferred cell-width for flows at even slightly 
supercritical Rayleigh numbers in a laterally unbounded layer will be different from 
that corresponding to the onset condition. 

Two minima for R, 
As previously noted, for some configurations the graph of R, as a function of 
cell-width L has two minima. Generally the values of B corresponding to these two 
minima are different. (Some examples corresponding to points where the two mini- 
mum values for R, are equal, are given at  the discontinuities in figures 5 and 7.) We 
present in figure 11 the results for one particular example, namely a two-layer system 
with rl = 0-2, K , / K ,  = 0.03 and a closed top. The values of R,, calculated for a 
single cell, are scaled and overlaid for multi-cell flows in the same way as before, to 
determine the multi-cell change-over widths Lnsm for the system. It is evident that the 
preferred number of cells at  onset does not simply increase by one at  every changeover 
value Ln,,,, although, as the system width becomes very large, that part of the curve 
which corresponds to the smaller of the two minima predominates, and the associated 
cell-width approaches the laterally unbounded result. 
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For the case being described, Rcmin = 19.38 (L = 1-16, u = 1.43) while, at the 
other minimum, R, = 19-85 (L = 0.26, u = 0.17). Some aspects of the behaviour of 
the graph of u are similar to that for the case where there is a single minimum for R,. 
At Ll,2 the single-cell value of u becomes zero; near the minimum at L = 1-16, u fist 
increases and then decreases - it again becomes exactly zero at the point where a 
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local minima for R ,  -a  two-layer system with rl = 0.2, K J K ,  = 0.03, closed top. 

change from one cell to two cells would take place if those parts of the curves corres- 
ponding to multi-cell flows with the smaller cell-width were not present. Figure 11 (a) 
shows the values of R, as determined by superposition, and figure 11 (b)  the cor- 
responding values of u. The higher u values associated with the greater cell-width 
indicate greater convective heat transfer than for the smaller cell-width. This is 
demonstrated in figure 11 (c) which shows values of N u  calculated for some super- 
critical Rayleigh numbers R > Rcmin. The cell-width which maximizes N u  for the 
regions corresponding to the narrower cells (L < La,, and Ll,5 < L < L,,.J decreases 
as R increases, while, for the regions corresponding to the wider cells, the opposite 
occurs, although there the increase in cell-width with R is only small. 

Which mode is preferred? 

An important point that arises here is that onset of convection in a system may not 
necessarily occur in that mode which will transfer the most heat at  higher Rayleigh 
numbers. For the last example, a lateral boundary separation of 1.5 indicates that, 
at onset of convection, which occurs a t  R = R, = 20.12, 6 cells will form, each of 
width 0-25 (i.e. n = 6), with the value of c being 0.17. However the critical Rayleigh 
number for a single cell of width 1.5 is R, = 20.50, with u = 0.62. For a Rayleigh 
number R = 22, for example, the value of the Nusselt number for the 6-cell convection 
pattern is, using (41), Nu,  = 1.016 while, for the single-cell pattern, Nu,  = 1.045. In 
fact, it may be easily shown by using (41 )  for each case, that the preferred onset 
convection pattern (corresponding to the smallest critical Rayleigh number) convects 
less heat for R > 20.65 than the single-cell pattern (i.e. Nu, < Nu,) .  For all but the 
special homogeneous closed top case, similar anomalies exist. For example, in a 
homogeneous open-top layer, with a lateral boundary separation of 1.6, the formula 
for the Nusselt number for a single cell (the preferred onset pattern! is 

Nu, = 1 + 1-44(R/Rc- 1) for R > R, = 0.703, 
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while for a two-cell pattern, with each cell of width 0.8, 

Nu, = 1 +2.51(R/RC- 1) for R > R, = 0.858. 

For R = 0.90, Nu, = 1.40 and Nu, = 1-12, giving Nu, > Nu,. But, for R = 1.40, 
Nu, = 2.43 < Nu2 = 2.59. For this case it is found that Nu, < Nu, for R > 1-22. 

It may be possible that, a t  higher Rayleigh numbers, the onset convection pattern 
is displaced by another pattern that produces the maximum heat flow, although (as 
indicated by our &st example) this need not necessarily lead to narrower cells. The 
results obtained by Straus t Schubert (1979) for a uniform layer where two- or 
three-dimensional flows have numerically close Nusselt numbers show that either 
mode can result when the system is randomly initialized. A similar result is likely to 
hold for the cases described above. This could only be determined by a full finite- 
amplitude analysis of the system, which is beyond the scope of this paper. 

10. The three-layer system 
Results were calculated for a three-layer configuration with an impermeable upper 

boundary (case A )  where an aquifer was positioned centrally between two layers of 
another material, whose permeability is different from that of the middle layer 
(i.e. T, = rl and K ,  = K,) .  Again, it was assumed that the layer conductivities were 
equal (i.e. k, = k, = k,). Values of Rcmin, L and u for the depths rl = 0*1,0.2,0-3,0.4, 
0.475 and 0-495 (corresponding to middle-layer thicknesses of 0.8, 0.6, 0.4, 0.2, 0.05 
and 0.01) and for the permeability range lo-, Q K J K ,  Q los are shown in figure 12. 
(Some results for the particular case T,  = 0.4, L = 1.0 are given in McKibbin t 
O’Sullivan (1980).) 

For the range where the permeability ratio is not extreme, comments similar to 
those made for the two-layer case apply. For certain layer thicknesses, bifurcation in 
the graphed values occur at  certain permeability ratios. For thick middle layers of 
fairly small permeability, convection throughout the entirs depth of the system 
implies wide cells, with widths of over twice the total depth, and large values of u. 
These correspond to wide areas of heating at the base for each cell, and consequent wide 
areas for cooling on the upper surface. 

Systems where the middle layer is thin are of interest because of the geothermal 
implications of a small relatively impermeable layer cutting through a permeable 
matrix. The most important effect seems to be the splitting of the convection pattern 
into two cells, rotating in the same direction, stacked vertically above and below the 
impermeable stratum. For r ,  = 0.01 (r ,  = 0.495) for example, when K , / K ,  = 0.001, 
the aspect ratio of each cell is approximately 1.45, with R, = 2-7 (giving R,, = R, 
= 26- 1) and u = 2.15. The temperature difference required to destabilize this system is 
thus 2.7 times that required if the impermeable layer was not there. The coefficient 
u is not very different from that for a homogeneous layer, however (the value for 
the latter is u = 2). Because the middle layer acts as a linking conductor between the 
cells, the system is not just behaving like two separate homogeneous-layer problems 
stacked on top of each other. This is only the case when the middle layer is infinitely 
conducting and is hence isothermal, giving R,, = R, = 4n2. This corresponds to  the 
homogeneous-layer onset problem where the vertical wavenumber is 2, giving a 
critical Rayleigh number R, = 4 for L = 0.5, with two square counter-rotating cells 
one above the other. 
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The only published results for finite-amplitude convection in a three-layer system 
are those by Rana et al. (1979), who considered a specific configuration modelling the 
Pahoa reservoir. Three cases were considered, two where the (fixed) sides of the 
region were heated, and one (case 111) where they were insulated. The present study 
can be applied to the last case. For the depths and permeability ratios given 
(rl = 0.4375, r, = 0.25, r3 = 0.3125, K,/Kl  = 0.4, K3/K ,  = 6-25) calculation shows 
that the critical value of R for the system is given when there are two cells in the 
reservoir. (Instead of minimizing R, for continuously varying L, it is minimized over 
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the values of L corresponding to 1, 2,3, . . . cells in the reservoir (which has a width to 
height ratio of 2).) This value is R, = 0.838, giving a value of 33.1 for Ra, as defined 
by Rana et al. The value of this parameter for which their results were found is 
Ra, = 300, more than 9 times critical. An interesting point is that, even at this high 
Rayleigh number, two cells appear to remain the preferred pattern in the reservoir. 
Estimation of the value of Nu in this case using the present analysis is inappropriate 
because of the high Rayleigh number. 

11. Equivalent parameters for a layered system 
The difficulties associated with modelling the complex structure of an actual 

geothermal system leads naturally to simplified models. Observation of average heat 
flux through the surface of a geothermal region does not in general allow direct 
deduction of the structure. Assumption of a homogeneous aquifer allows calculation 
of average permeability and thermal conductivity; however, as is shown below, 
layering of the system can have marked observable effects on the convective heat flux. 

We first define ‘equivalent ’ thermal conductivity and permeability for a general 
layered system. These quantities are such as to render, for a given average temperature 
gradient ATld, the inhomogeneous system indistinguishable from a homogeneous 
layer up to the point of onset of convection. 

In  a layered system, the heat transferred by conduction alone is 

= AT16 

as given previously in $2; the heat transferred by a homogeneous layer with an 
‘equivalent’ conductivity k,, is k ,bT/d .  For these two quantities to be equal requires 

This gives the equivalent conductivity of the layered porous medium as k, = d/6. 
An equivalent permeability, K,, for the layered system can be worked out by con- 

sidering the minimum value of R at which onset of convection can occur. At onset, 
the equivalent homogeneous layer has a Rayleigh number R,, given by 

p,gacAqdK 
47r2vke 

= R,. 

Similarly, the layered system has a Rayleigh number R, a t  onset, given by 

Upon division, we have 

-e=-- K Rhke 
Kl  Rc kl’  
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Certain combinations of layer depths and relative permeabilities and conductivities 
of different layered systems will give the same equivalent permeabilities and con- 
ductivities. At onset of convection the only distinguishable property will be cell-width 
which may or may not be observable. However, the expression for the Nusselt number 
for all the systems has the same form, namely 

AT 

Because the vaIues of u vary widely with different layered configurations, the heat 
transferred a t  supercritical Rayleigh numbers may also vary widely, even though the 
equivalent systems are indistinguishable up to the critical point. 

In order to make direct comparisons between systems which are equivalent, we 
investigate values of L and u for laterally unbounded configurations which give R, 
= 2.0. This means that onset occursin each of these systems, assumed to be of the same 
depth, at the same temperature difference AT,. We choose k,/k,  = k,/kl  = 1.0, and it 
then follows that Ke/Kl = 0.5 for the closed-top systems, and K,/K, = 0.343 for the 
open-surface cases. Thus, for all these systems, conduction of heat is the same up to 
the point of onset, which also occurs at  exactly the same temperature difference for 
each configuration. There the similarity ends, however. The cell-width and amount 
of heat transferred by conduction and convection together differ markedly from 
model to model, as shown in figure 13. (The two-layer graphs are truncated at 
rl N 0.65 since for large lower-layer depths there are no equivalent systems, no 
matter what the value of K,/K,. The three-layer graphs similarly are truncated at  
rl N 0.498.) Figure 13(b) gives a direct comparison of the heat transferred by the 
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FIGURE 14. Cell-widt,h L and convection coefficient u for two- and three-layer systems which 
have equivalent conductivity and permeability, and for which convection may begin for 
R ,  = 0-4. 

‘equivalent’ systems - the values vary markedly with rl, and also with whether the 
system has 2 or 3 layers, or has an open or closed upper surface. At some temperature 
difference AT > AT,, the two-layer open system is, in most cases (rl > 0.05), the one 
which transfers most heat, with the three-layer system close to it. The two-layer 
closed model has narrower cells, and less heat-transport capacity than either of the 
above, except near rl = 0 and at  rl = 0.65 (the latter value corresponds to the limit 
K J K ,  --f 0, when both two-layer systems become effectively the same). 

That these comments are not generally applicable to all cases is easily seen in 
figure 14, where the results for systems corresponding to R, = 0-4 are shown. (Again, 
we chose ke/kl = k,/kl  = 1.0, and then K e / K l  = 2.5 for the closed systems and 
Ke/K,  = 1.716 for those which are open.) Here, the cell-widths and heat transferred 
are in all cases less than for the homogeneous cases, both sets of values decreasing with 
increasing rl. For each value of the lower-layer depth the narrowest cells and smallest 
heat transfer attach to the three-layer system, while the heat transferred by the 
two-layer systems are much the same. The most important observation is that these 
equivalent systems may convect heat at any rate from that corresponding to a 
homogeneous system, down to zero. 

12. Conclusions 
The inclusion of more physical realism in the matrix properties of the medium is 

important for the accurate modelling of the heat transfer characteristics of a porous 
medium heated from below. This complements the results obtained (see, for example, 
Straus & Schubert 1977) when more realistic properties of water, such as temperature- 
dependent viscosity, are included. Cell-width at onset is little affected by water 
properties. The present work shows that the presence of layers of different per- 
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meability can have great influence on the convective flow in a porous medium heated 
from below. Because the slope of the Nusselt number graph varies with cell-width in 
a, layered porous medium the heat transferred through a geothermal system depends 
considerably on the layering of materials comprising the matrix. This indicates that 
the modelling of such systems by a homogeneous layer may give quite erroneous 
predictions as far as convection pattern and heat flux are concerned. 
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